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Abstract– Toward green educational building development, windows are important design 
elements as the source of natural lighting and heating in classrooms. The amount of natural 
lighting and net heating received by a classroom in a year depends on the school location, weather 
conditions, as well as the window orientation and size. Schools in Iran consume a considerable 
amount of energy which is mostly supplied using nonrenewable fossil fuel resources. This energy 
consumption can be reduced through a well-designed daylighting approach. In this paper, in order 
to investigate the effects of window characteristics on construction and operational costs of 
schools, by varying the Window-to-Wall Ratio (WWR) and window orientation, 288 daylighting 
scenarios are generated for a typical standard classroom in a warm-dry climatic zone in central 
Iran. The DOE-2 software is utilized to estimate annual gas and electric consumption, for the 
generated scenarios over a period of 50 years. Considering the operation and construction cost, the 
best window facing and optimal range of WWR in each orientation is determined for the studied 
standard classroom. The results of simulated daylighting scenarios are then used to train regression 
based Support Vector Machines (SVMs) in order to show the feasibility of applying the Support 
Vector Regression (SVR) as an artificial intelligent system. The obtained results show that SVR as 
an architectural assistant performs well and the SVR-based predictor can rapidly, easily and 
accurately predict the operational and construction cost of a classroom just by determining the 
window size and installation face.          

 
Keywords– Window characteristics, energy efficient window, daylighting, classrooms, green educational buildings, 
support vector regression (SVR)  
 

1. INTRODUCTION 
 

Classroom lighting level affects the students’ visual comfort and improves educational outcomes. 
Heschong et al. [1] established a correlation between the presence of daylight and student performance in 
school classrooms and showed that children in classrooms with better daylighting gain higher end-of-year 
test scores. Natural light also has a great influence on students’ bodies and minds [2]. Since the light 
source changes depending on time of day, seasonal and weather conditions, combined daylighting and 
electric lighting is required to set the classroom lighting level. Schools generally are active during sun 
shine hours and electric lighting is a backup control system during dark periods for poor illumination 
zones and times.  

                                                        
Received by the editors April 8, 2012; Accepted September 25, 2012. 
Corresponding author 
 
 



M. Fallahnia et al. 
 

IJST, Transactions of Mechanical Engineering, Volume 36, Number M2                                                                  October 2012 

194 

Windows are important design elements as the source of natural light in classrooms and have a 
considerable contribution in reducing the required electric lighting power and saving energy. On the other 
hand, windows are the main sources of unwanted heat loss in buildings. Singh and Michaelowa [3] 
showed that about one-fourth of the total energy used for space heating and cooling in 1990 is spent to 
offset the unwanted heat losses through windows in residential and commercial buildings in the United 
States. Heating, cooling, and lighting loads of schools can be reduced through a climate-responsive design. 
Window size and orientation have a great influence on the amount of heat gain in summers and heat loss 
in winters. Currently, there is not an applied guideline for characterizing windows in classrooms. Even in 
residential houses, the literature is limited to some general architectural recommendations for determining 
the window characteristics. For example, to avoid overheating in summer, in northern hemisphere 
countries architects are recommended to use limited West-facing windows. 

Persson et al. [4] investigated the influence of window size on energy balance of low energy houses 
outside Gothenburg, Sweden. They also estimated the maximum power needed to keep the indoor 
temperature at a comfort level. Lam et al. ([5] and [6]) simulated and analyzed the interactions between 
lighting and space heating/cooling loads in office buildings in different climate zones. They showed that 
lighting and office equipment played a significant role in the overall building energy efficiency and the 
window solar component can lower the annual building heating load. Wan et al. [7] analyzed the solar 
heat through the windows for nine major thermal zones in China through an hour-by-hour energy 
simulation. Perez and Capeluto [8] investigated the influence of window shading, glazing type, infiltration 
and some other factors on electric consumption of a base-case classroom in hot-humid climatic zone. They 
showed that the annual electric consumption could be reduced up to 50 percent through a high 
performance design. The influence of windows on the energy balance of apartment buildings in Amman 
were investigated by Hassouneh et al. [9] to select the best type of glazing. Li et al. [10] analyzed 
electricity consumption and indoor illuminance levels for a classroom employing high frequency dimming 
controls and showed that applying high frequency photoelectric dimming controls is effective in electric 
energy and lighting performance in schools. Wan et al. [11] carried out some multi-year building energy 
simulations for generic air-conditioned office buildings in China considering different climates and 
developed regression models to correlate simulated monthly heating and cooling loads and building 
energy use. 

Heating, cooling, and lighting loads of schools are closely dependent on window orientation and size 
regarding the amount of heat transmitted through the window and lighting level requirements in 
classrooms. In the present study, the DOE-2 simulator is used to quantify annual energy consumption in a 
typical classroom considering numerous window characteristics and daylighting scenarios. Then, perhaps 
for the first time, the present value of the operational and construction costs of the classroom are estimated 
over a long-term period of time for each daylighting scenario. By analyzing the results, some 
recommendations are presented for characterizing windows in classrooms in the study area. 

In finding the relations among available data intelligent systems, it is possible to find a hidden law 
behind the phenomenon. Nowadays, intelligent systems are considered as good predictors regarding their 
good performance in predictions. Since most architectural engineers are not familiar with the energy 
simulation codes, the obtained simulation results are utilized to train an artificial intelligence based model 
for predicting design priority just by determining the window facing and window to wall ratio. Among 
available several artificial intelligence based models, Support Vector Machine (SVM) as a powerful tool is 
selected. SVM, first introduced by Vapnik in 1995, [12], is an intelligent system that has been successfully 
used in different engineering fields. SVM uses the structural risk minimization inductive principle in order 
to achieve a proper generalization on a limited number of learning patterns. The present paper deals with 
the application of Support Vector Regression (SVR) as a well-known version of SVM for functional 
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estimation. The SVR is utilized for forecasting the construction and operational cost. Several statistical 
indices are used to evaluate the trained SVR in forecasts. 
 

2. METHODOLOGY 
 
A flowchart of the proposed methodology is presented in Fig. 1. In general, the methodology includes an 
energy simulation model, a constructional cost estimator model and a SVM based regression model. In 
order to investigate the impact of window characteristics on operational cost in a classroom, it is necessary 
to quantify the gas and electric consumption. Therefore, the first step of the proposed methodology is 
devoted to selecting a proper simulation model. The simulation model can provide the temporal variations 
of gas and electric consumption. 

Many simulation models have been developed for estimating energy consumption through numerical 
modeling of heat conduction, convection and radiation processes. Crawley et al. [13] reviewed the main 
characteristics of some building energy simulation models. In this paper, DOE-2, which is one of the most 
popular energy simulation models, is selected for energy simulation in classrooms. This model was 
developed by Lawrence Berkeley Laboratory in 1983, [14], with the financial support of the U.S. 
Department of Energy [15]. The DOE-2 can be effectively used for determining the impact of daylighting 
on energy use in buildings [16]. In this paper, the DOE-2 enables us to estimate energy consumption of the 
classroom. In order to compute the heat transfer by conduction and radiation through the building skin and 
estimate the heat loss and gain through the building components, the DOE-2 computations are performed 
on the basis of the thermal properties of used materials, the classroom geometry, the size and position of 
the window, lighting schedules, ambient conditions, temperature controls, building location, building 
orientation and the operation of the Heating, Ventilating, and Air-Conditioning (HVAC) system.  

 
Fig. 1. A flowchart of the proposed methodology for investigating the impact of 

 window characteristics on gas and electric costs in schools 
 

Start 

Choosing a proper energy simulation model 

Calibrating and verifying the simulation model using existing 
gas and electric consumption records for classrooms 

Are all generated 
scenarios modeled? 

Yes 

Determining the main characteristics of a typical 
classroom based on available local standards 

Gathering the required basic data (e.g. classroom 
geometry, climate characteristics and construction 
materials) for setting up the daylighting simulator 

Generating all possible daylighting scenarios with 
resizing the window  and changing the installation face. 

Selecting a daylighting scenario 

Estimating the construction cost of 
the selected daylighting scenario 

Simulating the selected daylighting scenario 
using the energy simulation model 

Recording the estimated construction and operational (gas 
and electric) costs of the classroom over a 50-year period  

Analyzing the obtained results to investigate the effect of 
window characteristics on the construction and operational costs 

No 

Utilizing the trained SVM as an architectural assistant 
to estimate the construction and operational costs just 
by determining the window size and installation face.   

 

Training a SVM using the recorded construction and operational costs 
 

Stop 

Dividing all simulated daylighting scenarios into training and test sets 

Using the test data set to evaluate the capabilities of the trained 
SVM in estimating the construction and operational costs  
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The thermal load calculation is performed using the weighting–factor technique. Since the governing 
differential equations which describe the heat transfer in a classroom are too complex for an analytical 
solution, both finite difference and finite element calculations have been used in different parts of DOE-2. 
The governing equations used in the simulation procedure are given in the DOE-2 user’s manual. Probably 
for first time, Gates and Wilcox [17] have made a daylighting study on classrooms in the California region 
using the old version of DOE-2. Loutzenhiser et al. [18] evaluated the efficiency of building energy 
simulation models for simulating daylighting in buildings. They concluded that for initial building design 
applications, the DOE-2 is an efficient practical computational tool for assessing daylighting performance. 
The capabilities of this simulation model have also been explored by other investigators (e.g. Bodartand 
De Herde [19], Lam et al. [5], Loutzenhiser and Maxwell [20], Ihm et al. [21]).  

Classrooms are generally categorized into four types. Seminar room, small classroom, large 
classroom and lecture hall are the standard classroom types designing for up to 22, 50, 99 and 100+ 
students respectively. Determining the classroom type and general features based on available local 
standards should be done in the second step of the proposed methodology. The third step is devoted to 
gathering the information needed for simulation. Building orientation and size, external facing 
characteristics, construction material, characteristics of the HVAC system and operational schedule 
besides the minimum required lighting level and climate characteristics are the factors required for any 
energy simulation. 

As mentioned before, in the proposed methodology the simulation code is utilized to solve the heat 
transfer equations to estimate the required annual energy. It is vital to find how well the simulation model 
predicts building energy usage. Comparing the model monthly energy consumption predictions to the 
monthly energy bill data of a base case classroom is the approach employed in this paper for calibration 
and verification of the simulation model. In this regard, as shown in Fig. 1, before investigating the role of 
window characteristics, simulating a real-world classroom is considered for debugging, verifying, and 
validating the simulation model.  

The methodology used in the present study includes a large number of daylighting scenarios aimed at 
investigating the impact of window characteristics on gas and electric bills in different daylight conditions. 
Several possible daylighting scenarios are generated by changing Window Wall Ratio (WWR), which is 
the ratio of the window area to the gross exterior wall area, and window installation face. The WWR has a 
considerable influence on the construction cost. To estimate the construction cost of the classroom in each 
scenario, a construction cost estimation model is developed. This flexible cost estimation tool can easily 
estimate the construction cost of the classroom based on the size and material of class and window. As 
shown in Fig. 1, a loop is considered to investigate all generated possible daylighting scenarios by 
utilizing the verified simulation model and cost estimation tool to estimate corresponding energy 
consumption and construction cost of each daylighting scenario. The estimated construction and 
operational cost of all simulated classrooms over a period of 50 years are used to investigate the effect of 
window characteristics on the present value of the total cost.  

Support Vector Regression (SVR) is a powerful tool to predict the operational and construction cost. 
To this aim, recorded construction and operational costs of all simulated daylighting scenarios should be 
randomly split into training and test sets. The training set is used to train and set the SVR. The statistical 
measures are then used to evaluate the capabilities of the trained SVR based model by using the test set. In 
the case that statistical measures show good dependencies in simulated and forecasted results, the trained 
SVM based model helps the architects as an assistant capable of estimating the construction and 
operational cost accurately just by determining the window size and installation faces directly. 
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3. SUPPORT VECTOR MACHINE 
 
This paper deals with the application of support vector machine (SVM) in forecasting the construction and 
operational cost of the standard classroom. Since the SVMs have been used successfully by many 
researchers in optimization and machine learning areas, SVMs have become a very popular method for 
learning. For example, handwritten digit recognition [22, 23] and face detection using SVMs was 
proposed. Bashi-Azghadi et al., [24] and Bashi-Azghadi and Kerachian, [25] have successfully applied the 
SVM in pollution source characterization in ground-water systems. SVM as a soft computing-based 
method also has the ability of approximating nonlinear wind–wave interaction, the SVM is used by 
Malekmohamadi et al. [26] for mapping wind data to wave height in Lake Superior, USA. The stock 
market has high noise, nonlinearity, uncertainty characteristics. Cai et al. [27] used the support vector 
regression to forecast future stock market. Evaporation estimation is an important task of hydrologists. Lin 
et al. [28] developed a support vector machine based model for daily pan evaporation estimation. Osareh 
and Shadgar [29] used the SVMs for automating the identification of blood vessels in color image of the 
retina to assist in the early detection of diabetic retinopathy disease as a practical, robust and 
computationally efficient tool. Allahbakhshi and Akbari [30] have applied the SVM for the dissolved gas 
analysis of insulating oil. 

The theory of the SVM algorithm is based on statistical learning theory. Support Vector Regression 
(SVR) as a well-known version of SVM for functional estimation uses the kernel function for non-linear 
support vector regression in order to find a function that has minimum deviation from the used training 
data. Gaussian and Polynomial kernels are the typical examples of kernel functions that are used to define 
a set of linear functions in a high dimensional space. The kernel function, )(x , transforms the nonlinear 
input space to linear space.  

Toward minimizing the regression error, minimizing the risk in SVR is the general task. SVR utilize 
the Vapnik’s  -insensitive loss function in order to estimate the risk. The  -insensitive loss function 
exhibits the sparsity of the solution ([11]). The  -insensitive loss function is defined by 
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where, C  is the regularization constant (Tay and Cao, [31]). So the SVM approximation can be 
represented by Eq. (3) 

bxwy  )(                                                    (3) 
 
Where w  and b  are determined by minimizing the regularized risk function, )(CR . For further details of 
the basic ideas underlying Support Vector Machines for function estimation readers are referred to Tay 
and Cao, [31] and Smola and Scholkopf [32]. Since support vector machines have greater generalization 
ability, in this study, a support vector regression (SVR) is applied for the operational and construction cost 
prediction and its results are compared to the outputs of the developed simulation model. Training data in 
SVR can be defined as ],[ ii yx where ix is the input vector, m

i Rx  . m is the dimension of input vector and 
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iy is the output vector. To have a more accurate forecast, normalizing the input vector in the range that 
]1,0[ix  is recommended. The following is used equation for normalizing the inputs: 

 

minmax
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xxx i

i 


                                                                    (4) 

where ix is the normalized input corresponding to ix  and ix is the original input variable which varies in 
the range between minx  and maxx .  

In order to evaluate the accuracy of the trained SVM in forecasting the construction and operational 
cost, the well-known statistical measures namely Correlation Coefficient, Mean Square Error (MSE) and 
Normalized Mean Square Error (NMSE) are used. The correlation coefficient is a measure of how well 
trends in the predicted costs follow trends in simulation based estimated costs. This factor varies in the 
range between zero and one. The correlation coefficient for n data in testing data set is defined as: 
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where c  is the SVM-based predicted construction and operational costs for a daylighting scenario and 

*c is the target value. Mean Square Error (MSE) is evaluated by the equation: 
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MSE ranges from zero to infinity where the lower bond corresponds to the ideal case. The Normalized 
Mean Square Error (NMSE) normalizes the MSE by dividing it through the variance of the target values.  
 

4. CASE STUDY 
 
In order to show how the methodology can be applied in investigating the impact of window 
characteristics on gas and electric costs in educational buildings, a case study in Iran is introduced in this 
section. Schools in Iran consume considerable amounts of gas and electricity which is mostly supplied 
using nonrenewable fossil fuel resources. On the other hand, electric lighting load in Iran plays an 
important role in schools’ energy consumption that can be offset through a well-designed daylighting 
approach. The studied classroom is located in Shiraz City, central Iran. Shiraz City as the capital of Fars 
province is located at 52.53 East longitude and 29.61 North latitude and about 1530 meters altitude above 
sea level. Weather data at the nearest weather station to the site is used by the simulation model. The main 
climatic characteristics of Shiraz City are summarized in Fig. 2. 

The classroom modeled in this paper is a typical standard classroom recommended by regulation and 
design standard published by Iran Organization of School Renovation, Development and Mobilization 
[33]. The selected classroom is rectangular shaped, with dimensions of 7.40m x 7.40m and a floor to 
ceiling height of 3m. In the simulation model, the classroom geometry, climate characteristics, daylight 
parameters and material properties are taken into account. A central packaged single zone air conditioner 
with combustion furnace is assumed for heating, ventilation and air conditioning. The fans operate one 
hour before opening time and one hour after closing time.  

In our case study, the WWR varies from 1.7% to 65.5%. Besides the geometry of the classroom, 
climatic variables and material properties, set points for heating and cooling are the main inputs of the 
simulation model. The main considered parameters in simulating the classrooms in the present study and 
the one simulated by Perez and Capeluto [8] are summarized in Table 1.  

In Table 2 the assumed envelop characteristics of the classroom studied in this paper are summarized. 
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Fig. 2. Monthly average of some climatic variables in Shiraz City (1971-2010) 

 
Table 1. The main considered parameters in simulating the classrooms in the present 

 study and the one simulated by Perez and Capeluto (2009)  
 

Parameter Present study The classroom studied by Perez and Capeluto (2009) 
Studied climatic zone Warm-dry Hot-humid 

Area type Lecture classroom Lecture classroom 

Classroom area (m2) 54.76 50 

Floor to ceil height (m) 3 2.8 

Window glass type Double clear Glazing  

Lighting control On/off On/off 

Exterior window shade None Shaded by systems installed on it 

Schedule information 

Classroom is assumed to be 
active 6 days a week all year 
round. Opens at 8:00am and 
closes at 6:00pm  

Classroom is assumed to be active 6 days a week 
from 1st of September to 30th of June. Opens at 
8:00am and closes at 6:00pm  

Minimum lighting level (lux) 300 300 
Cooling design temperature (°C) 23.9 24 
Heating design temperature (°C) 22.2 20 
Energy simulation model DOE-2 Energy, shading and radiance 
 

Table 2. The envelop characteristics of the classroom 

Parameter Value 
External wall heat transfer coefficient (W/m2°C) 3.05 
Internal wall heat transfer coefficient (W/m2°C) 2.28 
Roof heat transfer coefficient (W/m2°C) 2.91 
Ceiling heat transfer coefficient (W/m2°C) 2.05 
Window heat transfer coefficient (W/m2°C) 2.68 
Solar heat gain coefficient of window  0.81 
Window shading coefficient 0.95 
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5. RESULTS AND DISCUSSION 
 
In order to calibrate and verify the DOE-2 for estimating the gas and electric consumption, a real-world 
classroom located in the city of Shiraz is modeled. Figure 3 compares the amount of monthly predicted 
and observed gas and electric consumption in 2010. An error of about 7 percent in estimating annual gas 
and electric consumption shows the acceptable performance of the DOE-2. 

 
(a) 

 
(b) 

Fig. 3. A comparison between the predicted and observed (a) gas and (b) electric  
consumption in 2010 in the modeled typical classroom 

 
Perez and Capeluto [8] assessed the influence of window size just on annual electric energy consumption 
of a typical classroom in hot-humid climatic zone by keeping thermal and visual comfort in the classroom. 
The recommended size of North and South-facing windows by Perez and Capeluto [8] to achieve a high 
electric performance classroom is 30.6% of the wall area. This percent reduces to 25.5% for West and East 
orientations. The dimensions of the classroom modeled by Perez and Capeluto [8] are very close to the 
classroom considered in the present study. However, as shown in Fig. 4, there is a difference between the 
estimated annual electric consumption per unit area of the classrooms. Though the dimensions of the 
modeled classrooms are very close, the classroom investigated by Perez and Capeluto [8] is smaller in 
size, located in a deferent climate zone, is not active in July and August, and the exterior window is 
assumed to be shaded by systems installed on it (see Table 1 for details). Therefore, more annual electric 
consumption per unit area of the classrooms considered in this paper is expected. As shown in Fig. 4, 
general similar trends in behavior of annual electric consumption with the variation of WWR in the 
present study and those reported by Perez and Capeluto [8] for all window installation faces are seen. In 
this regard, such modeling is reliably justified for energy consumption approximation. 

To find the optimal value for WWR considering the total construction and operational cost, 288 
daylighting scenarios are generated for the standard classroom by varying window orientation and size. 
Each window is assumed to be located in the wall center and is characterized by its size and orientation. 
The DOE-2 is used to estimate the energy needed for heating, cooling and lighting. External shading due 
to surrounding building is not considered in this study. In all simulations, the time series of annual gas and 
electric consumption are estimated for a 50-year planning horizon. In Iran, the Ministry of Energy charges 
the educational customers 0.0294 US Dollars per kilowatt-hour (kWh) and schools buy natural gas at 
0.0816 US Dollars per cubic meter. Figure 5 shows the present value of the estimated electric and gas 
consumption for operation of the selected classroom over a period of 50 years. As shown in Fig. 5a, for 
WWR greater than 0.2, electric costs of North-facing windows are very low. However, the gas cost in 
North-facing windows is generally the worst case for any particular WWR. Figure 5a shows that for East, 
West and South-facing windows, the optimum WWR is in the range of 0.1 to 0.25 from the electric cost 
point of view. Figure 5b demonstrates that for WWR less than 0.15, there is a small range of variations of 
50-year gas cost per unit area in different daylighting scenarios. As shown in this figure, for WWR greater 
than 0.15 there is a significant drop in 50-year gas cost per unit area in East-facing windows. However, 
increasing trends in gas cost versus the WWR can be seen in North and West-facing windows. It can also 
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be seen that 50-year gas cost for East-facing windows in the range of studied WWR is considerably lower 
than other window orientations. 
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Fig. 4. A comparison between the estimated annual electric consumption per unit area of the classroom 

 modeled in this paper and the one considered by Perez and Capeluto (2009) 
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(b) 

Fig. 5. The present value of the estimated (a) electric and (b) gas consumption per  
unit area of the selected classroom over a period of 50 years 

 
A simple model is developed to estimate the construction cost of each classroom in different 

daylighting scenarios. Results of estimating the construction cost of simulated daylighting scenarios show 
that increasing the WWR leads to an increase in construction cost in a linear manner. The influence of size 
and orientation of the window on the present value of total cost of the classroom, which is the summation 
of gas, electric and construction costs is shown in Fig. 6.  

As shown in Fig. 5 the electric costs of North-facing windows are very low. However, the gas cost in 
North-facing windows is generally the worst case for any particular WWR. Since in computing the total 
cost the contribution of gas cost per unit area is much less than electric cost, in the case that the 
construction cost is the same for all window orientations, the construction and operational cost of North-
facing windows still have the lowest value. 
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According to this figure, large facing windows will generally increase the total cost, while for WWR 
greater than 0.2, a North-facing window performs much better in comparison with other window facings. 
Therefore, we can recommend the school designers to use the North-facing windows as much as possible. 
As it can be seen in Fig. 7, the orientation of the South, East and West-facing windows does not influence 
the total cost noticeably. The optimum value for the WWR in East, West and South-facing windows is in 
the range of 0.1 to 0.25. Therefore, the WWR of North-facing windows should be large (up to 0.5), but it 
should be kept reasonably small, less than 0.25, in other window orientation. 
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Fig. 6. The variation of the present value of the total cost of the classroom  

versus the WWR over a 50-year period 
 

The recorded construction and operational costs of simulated 288 daylighting scenarios were 
randomly split into training and test sets. In this regard, for each considered installation face, 15 
daylighting scenarios are randomly used for testing. In order to find the proper kernel function, kernel 
functions in this investigation were studied empirically and the polynomial kernel that provides the best 
results is selected. Besides setting the kernel function for SVR, it is necessary to set up the optimal values 
of error size,  , and regularization factors, C, a toolbox in MATLAB, namely LIBSVM (Chang and Lin, 
[34]), is able to find the optimal values toward a unique, optimal and global solution through an automatic 
trial error process. The LIBSVM toolbox is used here for predicting the total construction and operational 
costs. 

Correlation Coefficient (CC), Mean Square Error (MSE) and Normalized Mean Square Error 
(NMSE) were used to evaluate the performance of SVR. The best answer corresponds to polynomial 
kernel function with CC=0.988, MSE=12.02 and NMSE=0.042. These values confirm that SVR works 
well in predicting the total cost of a class room. Figure 7 provides a plot between the actual and predicted 
construction and operational cost.  
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Fig. 7. Comparison between the observed and forecasted construction and  

operational costs using the trained SVM 



The impact of window characteristics on gas and… 
 

October 2012                                                                  IJST, Transactions of Mechanical Engineering, Volume 36, Number M2   

203 

6. SUMMARY AND CONCLUSION 
 
Heating, cooling, and lighting costs of a classroom can be reduced through a climate-responsive design. In 
an integrated design, construction, gas and electric costs as well as climatic conditions are the main factors 
which should be considered by an architect in configuring classrooms’ windows. Currently, there is no 
applied guideline to help architects in characterizing classrooms’ windows. Even in residential houses, the 
literature is generally limited to some general architectural recommendations for determining the window 
characteristics. 

The methodology of combining an energy simulation model with an artificial intelligence based 
model is proposed to investigate the effects of window characteristics on the present value of the total 
construction and operational cost of a classroom. The proposed model was applied to a standard classroom 
in a warm-dry climatic zone, Shiraz City in Iran. All possible daylighting scenarios were generated for the 
considered standard classroom and in the classroom. By keeping thermal and visual comfort at the 
standard level, the DOE-2 was utilized to estimate annual gas and electric consumption for the generated 
scenarios over a period of 50 years. A simple model was also developed to estimate the construction cost 
of the classroom in different daylighting scenarios. 

Considering the operational and construction cost of the classroom, the results of simulations show 
that large facing windows will generally increase the total cost, while for WWR greater than 0.2, a North-
facing window performs much better in comparison to other window facings. The optimum value for the 
WWR in East, West and South-facing windows is in the range of 0.1 to 0.25. Therefore, the WWR of 
North-facing windows should be large (up to 0.5) but it should be kept reasonably small, less than 0.25, in 
other window orientations. In finding the relations among available data, intelligent systems are able to 
find the hidden law behind the phenomenon. In this paper the feasibility of applying the Support Vector 
Regression (SVR) as a well-known version of SVM for functional estimation of the construction and 
operational cost is also examined. Appropriate statistical measures of the test results on several 
daylighting scenarios prove that the trained SVM-based model provides an excellent performance and the 
SVR is applicable and performs well for estimating the total cost of a classroom with respect to outputs of 
simulation model. Regarding the good performance of SVR in predictions, the trained SVR as an 
architectural assistant can rapidly, easily and accurately predict the operational and construction costs of a 
classroom just by determining the window size and installation face. The output of this study is useful to 
architectural designers of educational buildings to examine the energy behavior of various window 
characteristics. It should be noted that energy in Iran, especially for educational buildings, is offered at 
less than the actual price. By considering the actual energy price the benefits of using optimal window 
characteristics will become clearer. Further investigations are necessary to find out how classroom size 
affects the optimal window size and orientation. As the methodology is general, by increasing the training 
data set, the trained SVM can be utilized for simulating various classroom sizes in different climatic 
zones. In future works, classrooms with two or more windows in different directions can also be taken into 
account to find the optimal size of each window. 
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